En / Ru

Kashin Boris Sergeevich

→ Head of the Department of Theory of Functions and Functional Analysis, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University

→ Steklov Mathematical Institute, Russian Academy of Sciences


Publications (recent):


→ B. Kashin, S. Konyagin, V. Temlyakov, "Sampling discretization of the uniform norm", Constr. Approx., 57 (2023), 663–694, DOI, arXiv.

→ B. S. Kashin, A. V. Meleshkina, "On the Absolute Convergence of Fourier Series of Functions of Two Variables in the Space \(C^{1,\omega}\)", Math. Notes, 114:4 (2023), 635–638, DOI.


→ B. S. Kashin, "An observation on the Gram matrices of systems of uniformly bounded functions and a problem of Olevskii", Russian Math. Surveys, 77:1 (2022), 171–173, DOI.

→ B. Kashin, E. Kosov, I. Limonova, V. Temlyakov, "Sampling discretization and related problems", Journal of Complexity, 71(2022), 101653-55, DOI, arXiv.


→ B. S. Kashin, "Lower bounds for \(m\)-term approximations in the metric of the discrete space \(L_n^0\)", Uspekhi Mat. Nauk, 76:5(461) (2021), 199–200, DOI.


→ B. S. Kashin, I. V. Limonova, "Weakly Lacunary Orthogonal Systems and Properties of the Maximal Partial Sum Operator for Subsystems", Proc. Steklov Inst. Math., 311 (2020), 152–170, DOI.

→ B. S. Kashin, "Remarks on the Uniform and Absolute Convergence of Orthogonal Series", Math. Notes, 108:5 (2020), 744–748, DOI.


→ B. S. Kashin, I. V. Limonova, "Decomposing a Matrix into two Submatrices with Extremally Small (2,1)-Norm", Math. Notes, 106:1 (2019), 63–70, DOI.

→ B. S. Kashin, I. V. Limonova, "Selecting a dense weakly lacunary subsystem in a bounded orthonormal system", Russian Math. Surveys, 74:5 (2019), 956–958, DOI.


→ B. S. Kashin, Yu. V. Malykhin, K. S. Ryutin, "Kolmogorov width and approximate rank", Proc. Steklov Inst. Math., 303 (2018), 140–153, DOI.

→ B. S. Kashin, V. N. Temlyakov, "Observations on discretization of trigonometric polynomials with given spectrum", Russian Math. Surveys, 73:6 (2018), 1128–1130, DOI.


→ B. S. Kashin, "Decomposing an orthogonal matrix into two submatrices with extremally small (2,1)-norm", Russian Math. Surveys, 72:5 (2017), 971–973, DOI.