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Classical sampling recovery problem

Let Ω be a compact subset of Rd . Suppose that f ∈ C(Ω) is a
function that provides the mapping x → y , x ∈ Ω, y ∈ R. Assume
that we are given the data: xi → yi , i = 1, . . .m. How to find f ?
Extra ingredients and assumptions:

1 f ∈W

2 what to do if there is no f ∈W such that f (xi ) = yi ,
i = 1, . . .m

3 xi are chosen randomly

4 yi are corrupted with noise
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Problem setting

Let X ⊂ Rd , Y ⊂ R be Borel sets, ρ be a Borel probability
measure on Z = X × Y . For f : X → Y define the error

E(f ) := E2(f ) :=

∫
Z

(f (x)− y)2dρ.

Consider ρX - the marginal probability measure on X (for S ⊂ X ,
ρX (S) := ρ(S × Y )). Define

fρ(x) := E(y |x)

to be a conditional expectation of y .
The function fρ is known in statistics as the regression function of
ρ. It is clear that if fρ ∈ L2(ρX ) then it minimizes the error E(f )
over all f ∈ L2(ρX ): E(fρ) ≤ E(f ), f ∈ L2(ρX ). Thus, in the sense
of error E(·) the regression function fρ is the best to describe the
relation between inputs x ∈ X and outputs y ∈ Y .
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Optimization problem

Also define a more general error

Ep(f ) :=

∫
Z
|f (x)− y |pdρ 1 ≤ p <∞.

Note that the following optimization problem

inf
f ∈Lp(ρX )

Ep(f )

is a convex optimization problem over the Banach space Lp(ρX ) or
over the Hilbert space L2(ρX ) in the case p = 2.
In the case of p = 2 our goal in terms of nonparametric statistics
(distribution-free theory of regression) is the following.
Given: (xi , yi ), i = 1, . . . ,m, independent identically distributed
according to ρ, |y | ≤ M a.e.
Find a good estimator f̂ for fρ with the error measured as
E(‖fρ − f̂ ‖2

L2(ρX )).
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Learning theory setting

Our setting is similar to the setting of the distribution-free
regression problem. The goal is to find an estimator fz, on the base
of given data z = ((x1, y1), . . . , (xm, ym)) that approximates fρ (or
its projection) well with high probability. We assume that (xi , yi ),
i = 1, . . . ,m are independent and distributed according to ρ. As in
the distribution-free theory of regression we measure the error in
the L2(ρX ) norm.
We note that a standard setting in the distribution-free theory of
regression (see the book Györfy, Kohler, Krzyzak and Walk (2002))
involves the expectation as a measure of quality of an estimator.
An important new feature of the setting in learning theory
formulated in Cucker and Smale (2001) is the following. They
propose to study systematically the probability distribution function

ρm{z : ‖fρ − fz‖L2(ρX ) ≥ η}

instead of the expectation.
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Mathematical formulation

There are several important ingredients in mathematical
formulation of the learning problem. In our formulation we follow
the way that has become standard in approximation theory and
based on the concept of optimal method. We begin with a class
M of admissible measures ρ. Usually, we impose restrictions on ρ
in the form of restrictions on the regression function fρ: fρ ∈ Θ.
Then the first step is to find an optimal estimator for a given class
Θ of priors (we assume fρ ∈ Θ). In regression theory a usual way
to evaluate performance of an estimator fz is by studying its
convergence in expectation, i.e. the rate of decay of the quantity
E(‖fρ − fz‖2

L2(ρX )) as the sample size m increases. Here the
expectation is taken with respect to the product measure ρm

defined on Zm. We note that

E(fz)− E(fρ) = ‖fz − fρ‖2
L2(ρX )
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Assumptions

An important question in finding an optimal fz is the following:
How to describe the class Θ of priors?
In other words, what characteristics of Θ govern, say, the optimal
rate of decay of E(‖fρ − fz‖2

L2(ρX )) for fρ ∈ Θ?
As we already mentioned above a more accurate and more delicate
way of evaluating performance of fz has been pushed forward in
Cucker and Smale (2001).
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A historical comment

Previous works in statistics and learning theory (see Barron (1991),
Barron, Birgé and Massart (1999), Barron, Cohen, Dahmen and
DeVore (2008), Binev, Cohen, Dahmen, DeVore and V. Temlyakov
(2005), Cucker and Smale (2001), DeVore, Kerkyacharian, Picard
and Temlyakov (2004), DeVore, Kerkyacharian, Picard and
Temlyakov (2006), Györfy, Kohler, Krzyzak and Walk (2002),
Konyagin and Temlyakov (2004), Konyagin and Temlyakov (2007),
Lugosi (2002), Temlyakov (2008), Vapnik (1998), Van de Geer
(2000)) indicate that the compactness characteristics of Θ play a
fundamental role in the above problem. It is convenient for us to
express compactness of Θ in terms of the entropy numbers.
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Kolmogorov width and entropy

For two sets A and B in a Banch space X define the best
approximation of A by B (the deviation of A from B)

d(A,B) := sup
a∈A

inf
b∈B
‖a− b‖.

Kolmogorov width of a centrally symmetric compact set W ⊂ X :

dn(W ,X ) := inf
B−linear subspace, dim B≤n

d(W ,B).

Entropy numbers of a compact set W ⊂ X :

εk (W ,X ) := inf
B−finite set of points of cardinality |B|≤2k

d(W ,B).
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Error and confidence

We have already mentioned above that the study of the probability
distribution function ρm{z : ‖fρ − fz‖L2(ρX ) ≥ η} is a more difficult
and delicate problem than the study of the expectation
E(‖fρ − fz‖2

L2(ρX )). We encounter this difficulty even at the level of
formulation of a problem. The reason for this is that the probability
distribution function provides control of two characteristics: η –
the error of estimation and 1− ρm{z : ‖fρ − fz‖L2(ρX ) ≥ η} – the
confidence of the error η. Therefore, we need a mathematical
formulation of the above discussed problems of optimal estimators.
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Accuracy confidence function

We proposed (see DeVore, Kerkyacharian, Picard and Temlyakov
(2006)) to study the following function that we call the accuracy
confidence function. Let a set M of admissible measures ρ, and a
sequence E := {E (m)}∞m=1 of allowed classes E (m) of estimators
be given. For m ∈ N, η > 0 we define

ACm(M,E , η) := inf
Em∈E(m)

sup
ρ∈M

ρm{z : ‖fρ − fz‖L2(ρX ) ≥ η}

where Em is an estimator that maps z→ fz. For example, E (m)
could be a class of all estimators, a class of linear estimators of the
form

fz =
m∑

i=1

wi (x1, . . . , xm, x)yi ,

or a specific estimator. In the case E (m) is the set of all
estimators, m = 1, 2, . . . , we write ACm(M, η).
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Main theorem

We let µ be any Borel probability measure defined on X and let
M(Θ, µ) denote the set of all ρ ∈M(Θ) such that ρX = µ,
|y | ≤ 1, where M(Θ) = {ρ : fρ ∈ Θ}. Here is a result from
DeVore, Kerkyacharian, Picard and Temlyakov (2006).

Theorem (DKPT)

Let µ be a Borel probability measure on X . Assume r > 0 and Θ is
a compact subset of L2(µ) such that Θ ⊂ 1

4U(C(X )) and

εn(Θ, L2(µ)) � n−r .

Then there exist δ0 > 0 and η−m ≤ η+
m, η−m � η+

m � m−
r

1+2r such
that the following two relations hold

ACm(M(Θ, µ), η) ≥ δ0 for η ≤ η−m

C1e
−c1(r)mη2 ≤ ACm(M(Θ, µ), η) ≤ e−c2mη2

for η ≥ η+
m.
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Some comments

Let us now make some conclusions. First of all, the above theorem
shows that the entropy numbers εn(Θ, L2(µ)) are the right
characteristic of the class Θ in the estimation problem. The
behavior of the sequence {εn(Θ, L2(µ))} determines the behavior
of the sequence {ACm(M(Θ, µ), η)} of the AC-functions.
Secondly, proof of that theorem points out that the optimal (in the
sense of order) estimator can be always constructed as a Least
Squares Estimator.
The above theorem discovers a new phenomenon – sharp phase
transition. The behavior of the accuracy confidence function
changes dramatically within the critical interval [η−m, η

+
m]. It drops

from a constant δ0 to an exponentially small quantity
exp(−cm1/(1+2r)). One may also call the interval [η−m, η

+
m] the

interval of phase transition.
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Least Squares Estimators

Let W ⊂ C(X ) be a compact subset of C(X ). As an estimator fz
for the data z = ((x1, y1), . . . , (xm, ym)) we take

fz,W := arg min
f ∈W
Ez(f ),

where

Ez(f ) :=
1

m

m∑
i=1

(f (xi )− yi )
2.

Theorem (DKPT) justifies the step of replacement the original
optimization problem

inf
f ∈Θ
E(f ) by the discrete problem inf

f ∈W
Ez(f )

with appropriately chosen W . In particular, we can take W = Θ.
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Defect function

Let f ∈ L2(ρX ). The defect function of f is

Lz(f ) := Lz,ρ(f ) := E(f )− Ez(f ); z = (z1, . . . , zm), zi = (xi , yi ).

We are interested in estimating Lz(f ) for functions f coming from
a given class W .
We assume that ρ and W satisfy the following condition.

∀f ∈W , f : X → Y , |f (x)− y | ≤ M a.e. (1)
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An illustrating result

Theorem (KT; Konyagin and Temlyakov (2004))

Assume that ρ, W satisfy (1) and W is such that

∞∑
n=1

n−1/2εn(W ) =∞.

For η > 0 define J := J(η/M) as the minimal j satisfying
ε2j ≤ η/(8M) and

SJ :=
J∑

j=1

2(j+1)/2ε2j−1 .

Then for m, η satisfying m(η/SJ)2 ≥ 480M2 we have

ρm{z : sup
f ∈W
|Lz(f )| ≥ η} ≤ C (M, ε(W )) exp(−c(M)m(η/SJ)2).
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Sampling discretization with absolute error

On this way we arrive at the following discretization problem,
which is important by itself.
Let W ⊂ Lq(Ω, µ), 1 ≤ q <∞, be a class of continuous on Ω
functions. We are interested in estimating the following optimal
errors of discretization of the Lq norm of functions from W

erm(W , Lq) := inf
ξ1,...,ξm

sup
f ∈W

∣∣∣∣∣∣‖f ‖q
q −

1

m

m∑
j=1

|f (ξj )|q
∣∣∣∣∣∣.
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General theorem

One can derive the following result from the above Theorem KT.

Theorem (T1; VT, 2018, 2022)

Assume that a class of real functions W is such that for all f ∈W
we have ‖f ‖∞ ≤ M with some constant M. Also assume that the
entropy numbers of W in the uniform norm L∞ satisfy the
condition

εn(W ) ≤ n−r (log(n + 1))b, r ∈ (0, 1/2), b ≥ 0, n ∈ N.

Then

erm(W ) := erm(W , L2) ≤ C (M, r , b)m−r (log(m + 1))b, m ∈ N.
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Comments

A theorem alike Theorem T1 might be another way to justify the
step of replacement the original optimization problem inff ∈Θ E(f )
by the discrete problem inff ∈W Ez(f ).
Theorem T1 is a rather general theorem, which connects the
behavior of absolute errors of discretization with the rate of decay
of the entropy numbers.

We impose a restriction r < 1/2 in Theorem T1 because the
probabilistic technique from the supervised learning theory has
a natural limitation to r ≤ 1/2.

It would be interesting to understand if Theorem T1 holds for
r ≥ 1/2.

We point out that in applications to the Machine Learning we are
interested in the randomised version of Theorem T1 – we would
like to have it for ξ1, . . . , ξm being independent random variables
distributed according to measure µ. Moreover, µ is unknown!
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Main problem

We now arrive at a critical problem of Learning Theory (Machine
Learning):
How to choose W , which is usually called hypothesis space?
Here are some standard options.

Choose W = Θ to be a smoothness class. In this case we
assume that fρ ∈ Θ.

Assume that fρ ∈ Θ and take W as a simpler than Θ class,
which well approximates Θ, for instance,
(a) a ball of a finite-dimensional subspace,
(b) a collection of n-term approximants with respect to a
given finite system of functions,
(c) a specific manifold parametrized by a finite number of
parameters.

The above (a)–(c) sets without any assumptions on fρ.
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Sparse approximation

A typical problem of sparse approximation is the following. Let X
be a Banach space with norm ‖ · ‖ and D be a set of elements of
X . For a given D consider the set of all m-term linear combinations
with respect to D (m-sparse with respect to D elements):

Σm(D) := {x ∈ X : x =
m∑

i=1

cigi , gi ∈ D}.

We are interested in approximation of a given f ∈ X by elements
of Σm(D). The best we can do is to get the error

σm(f ,D) := inf
x∈Σm(D)

‖f − x‖. (2)

Greedy algorithms in approximation theory are designed to provide
a simple way to build good approximants of f from Σm(D).
Clearly, we have an optimization problem of Ef (x) := ‖f − x‖ over
the manifold Σm(D).
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Sparse optimization

A typical problem of convex optimization is to find an approximate
solution x0 to the problem

inf
x
E (x) (3)

under assumption that E is a convex function. In the case that we
are optimizing over the whole space X , it is called an unconstrained
optimization problem. In many cases we are interested either in
optimizing over x of special structure (for instance, x ∈ Σm(D), as
above) or in optimizing over x from a given domain D (constrained
optimization problem). Greedy algorithms are used for finding an
approximate solution of special structure for problem (3).
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Sparse optimization continue

Usually in convex optimization, the function E is defined on a
finite dimensional space Rd . An important argument that
motivates us to study this problem in the infinite dimensional
setting is that in many contemporary data management
applications an ambient space Rd involves a large dimension d and
we would like to obtain bounds on the convergence rate
independent of the dimension d . Our results for infinite
dimensional spaces provide such bounds on the convergence rate.
Thus, we consider a convex function E defined on a Banach space
X . It is known that in many engineering applications researchers
are interested in an approximate solution of problem (3) as a linear
combination of a few elements from a given system D of elements.
There is an increasing interest in building such sparse approximate
solutions using different greedy-type algorithms.
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Greedy approximation in Banach spaces 1

We begin with a brief description of greedy approximation methods
in Banach spaces. Let X be a Banach space with norm ‖ · ‖. We
say that a set of elements (functions) D from X is a dictionary if
each g ∈ D has norm bounded by one (‖g‖ ≤ 1) and the closure
of spanD is X . A symmetrized dictionary is defined as

D± := {±g , g ∈ D}.

We denote the closure (in X ) of the convex hull of D± by A1(D).
In other words A1(D) is the closure of conv(D±). We use this
notation because it has become a standard notation in relevant
greedy approximation literature.
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Greedy approximation in Banach spaces 2

For a nonzero element f ∈ X we let Ff denote a norming (peak)
functional for f that is a functional with the following properties
‖Ff ‖ = 1, Ff (f ) = ‖f ‖. The existence of such a functional is
guaranteed by the Hahn-Banach theorem. The norming functional
Ff is a linear functional (in other words is an element of the dual
to X space X ∗) which can be explicitly written in some cases. In a
Hilbert space Ff can be identified with f ‖f ‖−1. In the real Lp,

1 < p <∞, it can be identified with f |f |p−2‖f ‖1−p
p . We describe

a typical greedy algorithm which uses a norming functional. We
call this family of algorithms dual greedy algorithms. Let
τ := {tk}∞k=1 be a given weakness sequence of nonnegative
numbers tk ≤ 1, k = 1, . . . . We define the Weak Chebyshev
Greedy Algorithm (WCGA) that is a generalization for Banach
spaces of the Weak Orthogonal Greedy Algorithm (Weak
Orthogonal Matching Pursuit).
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Greedy approximation in Banach spaces 3

Weak Chebyshev Greedy Algorithm (WCGA). We define
f c
0 := f c,τ

0 := f . Then for each m ≥ 1 we have the following
inductive definition.
(1) ϕc

m := ϕc,τ
m ∈ D is any element satisfying

|Ff c
m−1

(ϕc
m)| ≥ tm sup

g∈D
|Ff c

m−1
(g)|.

(2) Define
Φm := Φτ

m := span{ϕc
j }m

j=1,

and define G c
m := G c,τ

m to be the best approximant to f from Φm.
(3) Let

f c
m := f c,τ

m := f − G c
m.
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Greedy approximation in Banach spaces 4

In case tm = 1 in (1) we assume that such ϕc
m exists. The index c

in the notation refers to Chebyshev. We use the name Chebyshev
in this algorithm because at step (2) of the algorithm we use best
approximation operator which bears the name of the Chebyshev
projection or the Chebyshev operator. In the case of Hilbert space
the Chebyshev projection is the orthogonal projection and it is
reflected in the name of the algorithm. We use notation fm for the
residual of the algorithm after m iterations. This standard in
approximation theory notation is justified by the fact that we
interpret f as a residual after 0 iterations and iterate the algorithm
replacing f0 by f1, f2, and so on. In signal processing the residual
after miterations is often denoted by rm or rm.
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Greedy approximation in Banach spaces 5

For a Banach space X we define the modulus of smoothness

%(u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x + uy‖+ ‖x − uy‖)− 1).

The uniformly smooth Banach space is the one with the property

lim
u→0

%(u)/u = 0.

Vladimir Temlyakov Some mathematical problems related to artificial intellegence



Rate of convergence

It is known that the WCGA converges in any uniformly smooth
Banach space under mild conditions on the weakness sequence
{tk}, for instance, tk = t, k = 1, 2, . . . , t > 0, guarantees such
convergence. The following theorem provides rate of convergence.

Theorem (VT (2001))

Let X be a uniformly smooth Banach space with modulus of
smoothness %(u) ≤ γuq, 1 < q ≤ 2. Take a number ε ≥ 0 and two
elements f , f ε from X such that

‖f − f ε‖ ≤ ε, f ε/B ∈ A1(D),

with some number B = C (f , ε,D,X ) > 0. Then, for the WCGA
we have (p := q/(q − 1))

‖f c,τ
m ‖ ≤ max

(
2ε,C (q, γ)(B + ε)(1 +

m∑
k=1

tp
k )−1/p

)
.
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Comments

The above Theorem VT simultaneously takes care of two issues:
noisy data and approximation in an interpolation space. In order to
apply it for noisy data we interpret f as a noisy version of a signal
and f ε as a noiseless version of a signal. Then, assumption
f ε/B ∈ A1(D) describes our smoothness assumption on the
noiseless signal. Theorem VT can be applied for approximation of
f under assumption that f belongs to one of interpolation spaces
between X and the space generated by the A1(D)-norm (atomic
norm).
In particular, Theorem VT gives the upper bound for the
convergence rate for all f0 ∈ A1(D). It is in style of the worst case
setting for the class A1(D).

Vladimir Temlyakov Some mathematical problems related to artificial intellegence



Examples of dictionaries 1

Perhaps the first example of sparse approximation with respect to
a dictionary was considered by E. Schmidt (1906), who studied the
approximation of functions f (x , y) of two variables by bilinear
forms,

m∑
i=1

ui (x)vi (y),

in L2([0, 1]2). This problem is closely connected with properties of
the integral operator

Jf (g) :=

∫ 1

0
f (x , y)g(y)dy

with kernel f (x , y). Schmidt gave an expansion (known as the
Schmidt expansion)

f (x , y) =
∞∑

j=1

sj (Jf )φj (x)ψj (y).
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Examples of dictionaries 2

In the above Schmidt expansion {sj (Jf )} is a nonincreasing
sequence of singular numbers of Jf , i.e. sj (Jf ) := λj (J

∗
f Jf )1/2,

where {λj (A)} is a sequence of eigenvalues of an operator A, and
J∗f is the adjoint operator to Jf . The two sequences {φj (x)} and
{ψj (y)} form orthonormal sequences of eigenfunctions of the
operators Jf J

∗
f and J∗f Jf , respectively.

He also proved that

‖f (x , y)−
m∑

j=1

sj (Jf )φj (x)ψj (y)‖L2

= inf
uj ,vj∈L2, j=1,...,m

‖f (x , y)−
m∑

j=1

uj (x)vj (y)‖L2 .
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Examples of dictionaries 3

It was understood later that the above best bilinear approximation
can be realized by the following greedy algorithm. Assume cj ,
uj (x), vj (y), ‖uj‖L2 = ‖vj‖L2 = 1, j = 1, . . . ,m − 1, have been
constructed after m− 1 steps of the algorithm. At the mth step we
choose cm, um(x), vm(y), ‖um‖L2 = ‖vm‖L2 = 1, to minimize

‖f (x , y)−
m∑

j=1

cjuj (x)vj (y)‖L2 .

We call this type of algorithm the Pure Greedy Algorithm (PGA).
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Examples of dictionaries 4

Another problem of this type which is well known in statistics is
the projection pursuit regression problem. The problem is to
approximate in L2 a given function f ∈ L2 by a sum of ridge
functions, i.e. by

m∑
j=1

rj (ωj · x), x , ωj ∈ Rd , j = 1, . . . ,m,

where rj , j = 1, . . . ,m, are univariate functions. The following
greedy-type algorithm (projection pursuit) was proposed in
Friedman and Stuetzle (1981) to solve this problem.
Assume functions r1, . . . , rm−1 and vectors ω1, . . . , ωm−1 have been
determined after m− 1 steps of the algorithm. Choose at mth step
a unit vector ωm and a function rm to minimize the error

‖f (x)−
m∑

j=1

rj (ωj · x)‖L2 .

This is one more example of the Pure Greedy Algorithm.
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Examples of dictionaries 5

The following version of the above dictionary of ridge functions is
important in the theory of neural networks. We fix a univariate
function σ(t), t ∈ R. Usually, this function takes values in (0, 1)
and increases. Then as a dictionary we consider

{g(x) : g(x) = σ(ω · x), x ∈ Ω ⊂ Rd , ω ∈ Rd , ‖g‖2 = 1}.

Constructions based on this dictionary are called shallow neural
networks or neural networks with one lair.
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Deep learning 1

We build approximating manifolds inductively. Let x ∈ Ω ⊂ Rd .
Fix a univariate function h(t). A popular one in the ReLU
function: ReLU(t) = 0 for t < 0 and ReLu(t) = t for t ≥ 0. ReLU
= Rectified Linear Unit.
Take numbers s, n ∈ N and build s-term approximants of depth n
(neural network with n lairs). In the capacity of parameters take n
matrices A1 of size s × d , A2, . . . ,An of size s × s and vectors
b1, . . . ,bn, c from Rs .
At the first step define y1 ∈ Rs

y1 := h(A1x + b1) := (h((A1x)1 + b1
1), . . . , h((A1x)s + b1

s ))T .

Note that y1 is a function on x.
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Deep learning 2

At the kth step (k = 2, . . . , n) define

yk := h(Aky
k−1 + bk )

:= (h((Aky
k−1)1 + bk

1), . . . , h((A1y
k )s + bk

s ))T .

Finally, after the nth step we define

gn(x) := 〈c, yn〉 =
s∑

j=1

cjy
n
j .

Thus we build a manifold, which is described by the following
parameters: n matrices A1 of size s × d , A2, . . . ,An of size s × s
and vectors b1, . . . ,bn, c from Rs .
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The End

Thank you!
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